A Conceptual Framework for a Technical Interoperability Standard Promoting Highly Efficient Network-Based Clinical Trials and Collaborative Research

Eric S. Rosenthal†, M. Brandon M. Westover†, Anna A. Rodriguez‡, Dick D. Moberg‡.

†Massachusetts General Hospital, Department of Neurology, Boston, MA, USA, ‡Moberg Research, Inc., Ambler, PA, USA.

Introduction:
Clinical trials in neurocritical care require a predictable set of baseline, monitoring, treatment, and clinical outcomes data. However, interoperability standards restrict automated real-time streaming of this data, resulting in inefficiencies performing clinical trials, preventing real-time clinical trial oversight and constraining collaborative research. We investigated available data systems and developed a conceptual framework for clinical trial oversight and collaborative research in neurocritical care.

Methods:
Examining current traumatic brain injury interventional trials, we considered technical interoperability-based clinical trial oversight and collaborative analytic research. We elaborated a vendor-neutral interoperability schema for data extraction, repositories, analysis, annotation, and visualization.

Results:
The proposed conceptual solution is described. Nodes of data acquisition include: 1) continuously streaming devices including physiologic monitors and infusion pumps; 2) discrete data from high-penetrance EHR and laboratory platforms; and 3) biospecimen, radiology, and clinical outcomes repositories. An application program interface performs function calls to utilize individual episodes of data. A data management system queries and manages multiple patient records for batch processing of on-demand or pre-specified queries. A user interface toolkit enables annotation, analysis, and visualization for real-time or post-hoc assessment of raw and derived parameters (e.g., percent time in target range or on-protocol compliance). We enumerate the variety of current nodes requiring interoperability interfaces, and propose an open standard to promote a highly efficient platform for network-based clinical research, featuring automated case report form data extraction, a programmable interface for oversight and early warning detection, and a platform for annotation and crowdsourcing of novel algorithms.

Conclusions:
This conceptual architecture for a modular, vendor-neutral, data collection and management system for the acute care of patients in neurocritical care offers scalable efficiencies that promote network-based clinical trials in neurocritical care and offer new functionality for real-time oversight and collaborative analytics.